Eine Flut oder Cyber Attacke, Fehler in der Lieferkette oder der Verlust eines wichtigen Mitarbeiters. Es ist der Albtraum eines Unternehmers, aber schwerwiegende Betriebsstörungen können jederzeit auftreten. Beim Business Continuity Planning (BCP) geht es darum, einen Plan für die Bewältigung schwieriger Situationen zu haben, damit das Unternehmen so störungsfrei wie möglich weiter funktioniert.

Egal, ob es sich um ein privates Unternehmen, eine Organisation des öffentlichen Sektors oder eine Wohltätigkeitsorganisation handelt, Mitarbeiter der entsprechenden Führungsetagen müssen wissen, wie sie auch unter schwierigsten Bedingungen die Geschäfte am Leben erhalten können. Genau dafür gibt es BCP.

Was ist Business Continuity Planning?

Business Continuity Planning ist die Vorausplanung und Vorbereitung innerhalb einer Organisation, um sicherzustellen, dass sie in der Lage ist, ihre kritischen Geschäftsfunktionen während und nach dem Eintreten von Notfällen auszuführen. Solche katastrophalen Ereignisse können Naturkatastrophen, Geschäftskrisen, Pandemien, Gewalt am Arbeitsplatz oder Ereignisse sein, die zu einer Störung des Geschäftsbetriebs führen könnten. Beim effektiven Business Continuity Management wird nicht nur für Ereignisse geplant und vorbereitet, durch die Funktionen vollständig gestoppt werden, sondern auch für Ereignisse, die sich möglicherweise bloß sehr negativ auf einzelne Dienste oder Funktionen auswirken, sodass einzelne Tätigkeitsfelder einer Organisation starken Störungen unterliegen. BCP stellt sicher, dass Personal sowie Sach- und Vermögenswerte geschützt und im Katastrophenfall schnell wieder einsatzfähig sind.

Die Vorteile von BCP

  1. Es kann im äußersten Fall nicht nur Daten und Produktionszyklen, sondern Leben retten.

 

  1. Es schafft Vertrauen bei Mitarbeitern, Kunden & Geschäftspartnern.

 

  1. Es stellt die Einhaltung der Industriestandards sicher (aus versicherungstechnischer Sicht relevant).

 

  1. Es schützt den Brand Value und das Image.

 

  1. Es pflegt eine belastbare Organisationskultur.

 

  1. Es liefert wertvolle Geschäftsdaten.

 

  1. Es hilft, finanzielles Risiko zu mindern.

 

  1. Es schützt die Lieferkette.

 

  1. Es gibt Unternehmen im besten Fall einen Wettbewerbsvorteil

Schlüsselelemente im Business Continuity Management

Durch die Durchführung einer Business Impact Analysis (BIA) können mögliche Schwachstellen sowie die Auswirkungen einer Katastrophe auf verschiedene Abteilungen aufgedeckt werden. Der BIA informiert eine Organisation über die wichtigsten Funktionen und Systeme, die in einem Business Continuity Plan priorisiert werden müssen.Ein Business-Continuity-Plan besteht aus drei Schlüsselelementen: Ausfallsicherheit, Wiederherstellung und Kontingenz.

Ein Unternehmen kann die Ausfallsicherheit erhöhen, indem es kritische Funktionen und Infrastrukturen mit Blick auf verschiedene Katastrophenmöglichkeiten entwirft. Dies kann Personalwechsel, Datenredundanz und die Aufrechterhaltung eines Kapazitätsüberschusses umfassen. Durch die Gewährleistung der Ausfallsicherheit in verschiedenen Szenarien können Unternehmen wichtige Dienste auch ohne Unterbrechung vor Ort und außerhalb des Standorts bereitstellen.

BCP als Notfallplan

Eine schnelle Wiederherstellung der Geschäftsfunktionen nach einem Notfall ist von entscheidender Bedeutung. Das Festlegen von Zielen für die Wiederherstellungszeit für verschiedene Systeme, Netzwerke oder Anwendungen kann helfen, Prioritäten für die Elemente festzulegen, die zuerst wiederhergestellt werden müssen. Andere Wiederherstellungsstrategien umfassen Ressourceninventare, Vereinbarungen mit Dritten zur Übernahme von Unternehmensaktivitäten und die Nutzung umgebauter Räume für geschäftskritische Funktionen.

Ein Notfallplan enthält Verfahren für eine Vielzahl externer Szenarien und kann eine Befehlskette enthalten, die die Verantwortlichkeiten innerhalb der Organisation während eines Katastrophenfalls verteilt. Diese Aufgaben können den Austausch von Hardware, die Anmietung von Büroräumen für Notfälle, die Schadensbeurteilung und die Beauftragung von Drittanbietern umfassen.

Ein entscheidender Faktor für einen schnellen Wiederanlauf beschädigter Geschäftsfunktionen sind kontinuierliche IT-Funktionen: Mit der heutigen Technologie können viele Vorsichtsmaßnahmen getroffen werden, um Daten, Informationen und Vorgänge zu schützen. Die Schlüsselwörter Datensicherung und Backup spielen hierbei in unserer digitalen Welt eine zentrale Rolle. Ein cloudbasierter Rechenzentrumsdienst ermöglicht Unternehmen, Ressourcen schnell zu verschieben und trotzdem auf dieselben Anwendungen und Informationen zuzugreifen. Der Business Continuity Plan und die IT-Infrastruktur einer Organisation sollten diese Strategie berücksichtigen.

Fünf Schritte zur Business Continuity-Planung

 

Um einen effektiven Business Continuity Plan zu erstellen, sollte ein Unternehmen die folgenden fünf Schritte ausführen:

 

Schritt 1: Risikobewertung

 

– Bewertung der Sicherheit vor bestimmten Szenarien

 

– Überprüfung der Points of Failure

 

– Bewertung der Auswirkungen verschiedener Geschäftsunterbrechungsszenarien

 

– Bestimmung der Eintrittswahrscheinlichkeit eines Risikos anhand eines Ratingsystems

 

– Entwicklung eines Plans zum weiteren Vorgehen anhand voriger Priorisierung

 

Schritt 2: Business Impact Analysis (BIA)

– Analyse der Recovery Point Objectives (RPO) und Recovery Time Objectives (RTO)

 

– Identifizieren kritischer Geschäftsprozesse und Workflows sowie unterstützender Produktionsanwendungen

 

– Identifizieren von Interdependenzen, sowohl intern als auch extern

 

– Identifizieren von kritischem Personal, einschließlich Backups, Fähigkeiten, primären und sekundären Kontakten

 

– Identifizieren eventueller spezieller Umstände

 

Schritt 3: Entwicklung eines Business Continuity Plans

 

– Abnahme der Business Impact Analysis durch die Geschäftsleitung

 

– Zusammenfassen der Risikobewertung und der BIA-Ergebnisse, um einen umsetzbaren und gründlichen Plan zu erstellen

 

– Entwicklung von unabhängigen Abteilungs- und Standortplänen

 

– Überprüfung des Plans mit den wichtigsten Interessengruppen zur Fertigstellung und Verteilung

 

Schritt 4: Implementierung planen

 

– Verteilung des Plans an alle wichtigen Stakeholder

 

– Durchführung von Schulungen, um sicherzustellen, dass die Mitarbeiter mit den im Plan beschriebenen Schritten vertraut sind

 

Schritt 5: Testen und Wartung planen

 

– Durchführung von Simulationsübungen, um sicherzustellen, dass die wichtigsten Stakeholder mit den Planschritten vertraut sind

 

– Durchführung von halbjährlichen Planprüfungen

 

– Durchführung jährlicher Business Impact Assessments

Lange Jahre wurde die Architektur von Speicher ausschließlich durch die Parameter der Hardware bestimmt. Zumindest, was Größe, Zugriffsgeschwindigkeit und Cache anging. Dynamische Volumes und RAID-Verbünde waren ein erster Schritt, zu mehr Flexibilität. Software defined Storage (SDS) ist die konsequente Fortentwicklung dieses Ansatzes. Der Speicherplatz wird dabei von der Hardware abstrahiert. Dies erlaubt maximale Flexibilität und Skalierbarkeit.

Wie funktioniert die klassische Speicherung von Dateien?

Bis der physikalische Speicher dem Benutzer zum Ablegen seiner Daten angeboten wird, durchläuft er mehrere logische Bearbeitungsprozesse. Dies beginnt beim Controller der klassischen Festplatte. Dieser fasst Speicherbereiche zusammen und bietet sie dem Dateisystem in einer logischen Adressierung an. In Flashspeicher ist ebenfalls eine Abstraktionsschicht integriert, der Flash Translation Layer (FTL). Dieser übernimmt die Adressierung des vom Controller verwalteten Speichers.

Sowohl vom Betriebssystem, als auch auf Hardware-Ebene, können Verbünde erzeugt werden. Beispielsweise durch einen RAID-Controller, der den Speicher von zwei oder mehr Festplatten transparent zu einem großen Bereich zusammenfasst. Auch auf Software-Ebene ist dies möglich, indem beispielsweise unter Windows aus mehreren Festplatten ein dynamisches Laufwerk gebildet wird.

Auf den so zur Verfügung gestellten Speicher greift das Dateisystem zu und übernimmt die Partitionierung sowie Speicherung der Dateien.

Bezüglich der Schreib- und Lesegeschwindigkeit ist man bei diesen Methoden immer auf das „schwächste Glied“ im Verbund reduziert. Die Ablage der Dateien erfolgt zufällig. Auch ist der Austausch oder die Erweiterung der Komponenten nicht in jedem Fall möglich, ohne den gesamten Verbund neu aufzubauen. Ausnahme hiervon sind natürlich RAID-Verbünde, die speziell auf Redundanz ausgelegt sind, dafür aber eine homogene Hardware benötigen.

Wie funktioniert Software defined Storage?

Software defined Storage (SDS) übernimmt mehrere Aufgaben, die zuvor durch unterschiedliche Komponenten erledigt wurden. Er setzt an der Stelle an, wo der Speicher vom Controller logisch zur Verfügung gestellt wird. Er fasst die eingebundenen Komponenten zusammen und setzt sie dynamisch ein.

Dabei kann heterogene Hardware zum Einsatz kommen, ohne dass hierdurch die gesamte Performance beeinträchtigt wird. Vielmehr werden beispielsweise schnelle Speicher für eine Zwischenspeicherung verwendet. Die Daten werden dann zu weniger lastintensiven Zeiten auf andere Bereiche verteilt. Weiterhin ist das Dateisystem ein fester Bestandteil des Systems. So wird dafür gesorgt, dass Daten nicht doppelt abgelegt werden. Sind Dateien inhaltlich mehrfach vorhanden, speichert das Dateisystem sie nur einmal ab und legt Verweise auf den Inhalt an. Diesen Vorgang nennt man Deduplikation.

Auch das Anlegen von Snapshots und Backups wird durch Software defined Storage (SDS) gewährleistet. Die Datenablage erfolgt in redundanten Arrays. So kann Datenverlust bei Ausfall einzelner Komponenten verhindert oder vermindert werden.

Ein großer Vorteil ist die bereits angesprochene Skalierbarkeit. Es ist zu jedem Zeitpunkt möglich, Speicher zu ergänzen. Auch ein Austausch oder das Entfernen von Komponenten ist im laufenden Betrieb möglich.

Anwendungsfälle für Software defined Storage

Software defined Storage (SDS) bietet die flexible Basis für gemeinsam genutzten Speicherplatz in lokalen Netzwerkverbünden. Hauptsächlich dürfte dies für Firmennetzwerke interessant sein. Aus allen bereits vorhandenen Servern kann ein Software defined Storage (SDS) gebildet werden. Auf diesem können dann die notwendigen Dienste angeboten werden. Eine Möglichkeit ist beispielsweise die Nutzung des Speicherplatzes als Fileservers. Auch beliebige Serverdienste können darauf ausgeführt werden. Diese dürfen auch in einer virtualisierten Umgebung laufen. Das gesamte System ist nach der Einrichtung zentral administrierbar.

Was ist Ceph?

Ceph ist eine freie Variante des Software defined Storage (SDS). Sie wird unter GNU Lesser General Public License angeboten (LGPL). Ceph läuft unter Linux und wird von einem Konsortium verschiedener Hard- und Softwarehersteller entwickelt. Unter den Firmen befinden sich Canonical (Entwickler von Ubuntu-Linux), Cisco, Fujitsu, Intel, Red Hat, SanDisk und SuSE-Linux.

Die Software läuft auf handelsüblicher Hardware. Zur Speicherung wird ein Algorithmus mit Namen CRUSH verwendet. Dies steht für Controlled Replication Under scalable Hashing und setzt die Verteilung der Daten im System um. Die Komponenten im System werden Object Storage Nodes (OSDs) genannt. Es ist eine Redundanz der Daten vorgesehen, die dafür sorgt, dass ausgefallene Komponenten ohne Datenverlust ersetzt werden können. Die Software bringt mit CephFS ein eigenes Dateisystem mit.

Was ist Storage Spaces Direct?

Storage Spaces Direct (S2D) heißt der Software defined Storage (SDS) von Microsoft. Das System ist bereits in den Datacenter-Versionen von Windows Server 2016 und 2019 integriert. Es kann also relativ einfach verwendet werden, wenn die Infrastruktur auf diesen Betriebssystemen basiert. Die Flexibilität ist allerdings insofern eingeschränkt, als dass für jedes eingebundene Gerät eine Lizenz erforderlich ist.

Die Einrichtung von S2D erfolgt per PowerShell. Als Dateisystem kann das bekannte NTFS oder das für diesen Zweck optimierte ReFS zur Anwendung kommen. Bei ausreichend eingebundenen Komponenten liegt die Speichereffizienz bei bis zu 80 Prozent. Auch S2D bietet eine Wiederherstellung verlorener Dateien. Dies wird mit der Technik Local Reconstruction Codes (LRC) gewährleistet.

Weitere Anbieter von Software defined Storage

VMWare, der Spezialist für Virtualisierung, verwendet Software defined Storage (SDS) für seine Software vSAN, die Wiederherstellungssoftware Site Recovery Manager und sein Framework Virtual Volumes. Hierbei handelt es sich um ein kostenpflichtiges Angebot. Eine freie Alternative zu Ceph ist das Netzwerk-Dateisystem GlusterFS.

OpenStack Swift ist ein weiteres System zur Bereitstellung von Netzwerkspeicher aus verteilten Systemen. Es handelt sich dabei um Open-Source-Software, die also kostenfrei genutzt werden darf.

Gehört Software defined Storage die Zukunft?

Es sieht im Moment danach aus, dass Software defined Storage (SDS) das Konzept der Zukunft ist. Insbesondere gegenüber vorhandenen NAS- und SAN-Lösungen besticht es durch seine Flexibilität.  Man kann Hardware kann integrieren. Zuwächse in der Performance sind auch mit geringen Investitionen möglich. Zudem scheint der integrative Ansatz ein großer Vorteil bei der Administration zu sein. Backup-Strategien müssen beispielsweise nicht separat entworfen werden. Die Möglichkeit zur zentralen Administration ist ein grundsätzlicher Bestandteil der Technologie. Zudem sind keine Beschränkungen bei der Art der Nutzung des Speicherplatzes des Software defined Storage (SDS) gegeben. Somit harmoniert es beispielsweise gut mit dem Konzept der Virtualisierung von Systemen.